

 Navigation

 	
 index

 	
 next |

 	ZanuiFixturesBundle 2.0.0 documentation

Welcome to the ZanuiFixturesBundle!

This bundle defines abstract fixture classes to load test data into a database.
It complements the DoctrineFixturesBundle [https://github.com/doctrine/DoctrineFixturesBundle] by extending and implementing
classes from the Doctrine2 Data Fixtures library [https://github.com/doctrine/data-fixtures>] to ease the pain of loading
data fixtures programmatically into the Doctrine ORM. Please read the
documentation [http://symfony.com/doc/current/bundles/DoctrineFixturesBundle/index.html] for that bundle first to get familiar with the basic concepts that
we will build upon.

Guide

	Installation

	Configuration

	Creating a simple fixture class

	Directory structure and naming conventions

	Controlling the loading order

	Available data options and fixture properties
	Data options

	Fixture properties

	Advanced usage

Cookbooks

	Writing custom loaders

 Copyright 2014, Internet Services Australia 3 Pty Limited (http://www.zanui.com.au).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ZanuiFixturesBundle 2.0.0 documentation

Installation

To install, add the following to your composer.json file:

{
 "require": {
 "zanui/zanui-fixtures-bundle": "2.0.*"
 }
}

Update the vendor libraries:

$ php composer.phar update zanui/zanui-fixtures-bundle

Finally, register the DoctrineFixturesBundle and the
ZanuiFixturesBundle in app/AppKernel.php.

// ...
public function registerBundles()
{
 $bundles = array(
 // ...
 new Doctrine\Bundle\FixturesBundle\DoctrineFixturesBundle(),
 new Zanui\FixturesBundle\ZanuiFixturesBundle(),
 // ...
);
 // ...
}

 Copyright 2014, Internet Services Australia 3 Pty Limited (http://www.zanui.com.au).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ZanuiFixturesBundle 2.0.0 documentation

Configuration

The ZanuiFixturesBundle can be used without any configuration, but there are two convenience fallback
parameters that you can define in your config.yaml to facilitate the creation of fixtures:

	entity_namespace_fallback (string)

	Defines a namespace to load entities from when a namespace property is not explicitly declared
in the fixture class. If all (or most) of your entities belong to a common namespace, adding that
namespace here will save you from having to add it in every fixture class.

	base_order_fallback (integer, defaults to 1)

	Defines a base order for loading fixtures when an order property is not explicitly declared
in the fixture class.

Here is a typical configuration:

app/config/config.yml

zanui_fixtures:
 entity_namespace_fallback: 'Acme\HelloBundle\Entity'
 base_order_fallback: 100

 Copyright 2014, Internet Services Australia 3 Pty Limited (http://www.zanui.com.au).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ZanuiFixturesBundle 2.0.0 documentation

Creating a simple fixture class

Let’s walk through it with the same example as in the DoctrineFixtureBundle documentation.
Imagine that you have a User class, and you would like to load a couple of User entries.

First, we would create a YAML file with the necessary information:

src/Acme/HelloBundle/DataFixtures/ORM/Data/User.yml

options:
 add_reference: true
data:
 admin:
 username: admin
 password: admin
 test:
 username: test
 password: test

Note: we will explain what options are available and what they do later on.

Then, we will need a fixture class to load the information:

<?php
// src/Acme/HelloBundle/DataFixtures/ORM/LoadUserData.php

namespace Acme\HelloBundle\DataFixtures\ORM;

class LoadUserData extends AcmeHelloOrmFixture
{
 protected $name = 'User';
}

That’s it! Well, not so fast. Notice LoadUserData is extending AcmeHelloOrmFixture,
which we have not written yet. Luckily, it is also quite simple and we only need one like
this per bundle. Here it is:

<?php
// src/Acme/HelloBundle/DataFixtures/ORM/AcmeHelloOrmFixture.php

namespace Acme\HelloBundle\DataFixtures\ORM;

use Zanui\FixturesBundle\DataFixtures\ZanuiOrmFixture;

abstract class AcmeHelloOrmFixture extends ZanuiOrmFixture
{
 protected $baseDir = __DIR__;
}

And now that really is it!

Of course, you could choose to add the baseDir property on the
loading classes and extend them directly from ZanuiOrmFixture, but if you have a lot of
classes this is the preferred way to go. Anyway, this is how the LoadUserData would look
like in that case:

<?php
// src/Acme/HelloBundle/DataFixtures/ORM/LoadUserData.php

namespace Acme\HelloBundle\DataFixtures\ORM;

use Zanui\FixturesBundle\DataFixtures\ZanuiOrmFixture;

class LoadUserData extends ZanuiOrmFixture
{
 protected $baseDir = __DIR__;
 protected $name = 'User';
}

Notice that without AcmeHelloOrmFixture, we would need to add the use statement and
the baseDir property to all fixture classes.

You might feel like there is still something missing: how is ZanuiOrmFixture calling
the setter methods for my User entity, or even creating the entity in the first place?
You are right to feel that way, but everything works because we followed a specific
directory structure and stuck to a few naming conventions.

 Copyright 2014, Internet Services Australia 3 Pty Limited (http://www.zanui.com.au).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ZanuiFixturesBundle 2.0.0 documentation

Directory structure and naming conventions

The AcmeHelloOrmFixture sets the baseDir to __DIR__, which will make ZanuiOrmFixture
look for YAML files inside __DIR__/Data/ with the filename matching that of the fixture.
The name of the class LoadUserData can be anything, as long as its name property matches an
existing file inside the Data directory. The name also needs to match that of the entity class.

Acme/
└─ HelloBundle/
 └─ DataFixtures/
 └─ ORM/
 ├─ Data/
 ├─ ├─ User.yml
 ├─ └─ ...
 ├─ AcmeHelloOrmFixture.php
 ├─ LoadUserData.php
 └─ ...

The names of the entity fields inside the YAML file also need to follow a convention,
as the the bundle uses it to infer the setter method to call in order to set their value:

	To have a setter method called setUsername invoked, the field in the YAML file needs to be called username or Username

	If the setter method was called setUserName, then the field would need to be called user_name or UserName.

You get the idea.

The ZanuiFixture class has a property namespace that falls back to the entity_namespace_fallback
parameter. If the User entity class did not belong to that namespace, or entity_namespace_fallback
was not declared in the bundle’s configuration, we would need to add the correct namespace for the
LoadUserData class:

<?php
// src/Acme/HelloBundle/DataFixtures/ORM/LoadUserData.php

namespace Acme\HelloBundle\DataFixtures\ORM;

class LoadUserData extends AcmeHelloOrmFixture
{
 protected $namespace = 'Acme\OtherBundle\Entity';
 protected $name = 'User';
}

 Copyright 2014, Internet Services Australia 3 Pty Limited (http://www.zanui.com.au).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ZanuiFixturesBundle 2.0.0 documentation

Controlling the loading order

When we want to create a new fixture that depends on other fixtures, we will need to make
sure that it is loaded after all its dependencies. To do that, we simply need to add an order
property to the class and make its value higher than that of all its dependencies.

We will also need to link the entity to its dependencies (foreign keys) in the YAML file.
We do that by setting the value of the foreign key to be the key of the entity it depends on.
Take the following example, in which we add a Group entity...:

src/Acme/HelloBundle/DataFixtures/ORM/Data/Group.yml

options:
 add_reference: true
data:
 admin:
 group_name: admin

<?php
// src/Acme/HelloBundle/DataFixtures/ORM/LoadGroup.php

namespace Acme\HelloBundle\DataFixtures\ORM;

class LoadGroup extends AcmeHelloOrmFixture
{
 protected $name = 'Group';
}

... and a UserGroup entity to assign a User to a Group:

src/Acme/HelloBundle/DataFixtures/ORM/Data/userGroup.yml

options:
 foreign_keys:
 - user
 - group
data:
 -
 user: User-admin
 group: Group-admin

<?php
// src/Acme/HelloBundle/DataFixtures/ORM/LoadUserGroup.php

namespace Acme\HelloBundle\DataFixtures\ORM;

class LoadUserGroup extends AcmeHelloOrmFixture
{
 protected $name = 'UserGroup';
 protected $order = 200;
}

Notice that we referred to the admin user by making user have the value User-admin,
in which the first part is the entity it refers to and the second part was the key for the
admin user as defined in its YAML file (same applies for group). Also notice that the order is
set to 200 to make sure User and Group are already loaded when we process UserGroup.

The loader knows that those values are foreign keys because we explicitly listed them using the
foreign_keys option. Any fields that start with fk_ (case insensitive)
are automatically inferred to be foreign keys, so they don’t need to be included in the list.
The references exist because we added the option add_reference: true to our User.yml and
Group.yml files.

We have just gone through examples that required the use of options, so let’s jump straight into
that topic and describe all available options.

 Copyright 2014, Internet Services Australia 3 Pty Limited (http://www.zanui.com.au).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ZanuiFixturesBundle 2.0.0 documentation

Available data options and fixture properties

Data options

	flush_preserving_ids (boolean, defaults to false)

	Indicates whether the entities should be saved overriding the default ID generation strategy [http://doctrine-orm.readthedocs.org/en/latest/reference/basic-mapping.html#identifier-generation-strategies] to preserve the given IDs. This is only necessary if in some parts of your applications you have assumed that some entities have a certain ID (eg. to simplify queries).

	flush_on_every_row (boolean, defaults to false)

	Indicates whether the entity should be flushed on every row instead of only at the end (eg. you depend on the ID of a previous row, like in a parent-child relationship).

	add_reference (boolean, defaults to false)

	Indicates whether to set a reference for the current entity. Only necessary if the entity will act as a foreign key for other entities.

	foreign_keys (array)

	Defines a list of fields that should be treated as foreign keys, ie. their values point to a previously saved reference. Fields that start with fk_ (case insensitive) are assumed to be foreign keys, so they do not need to be listed.

	local_references (array, only for fixtures using a``ZanuiCustomLoader``)

	Similar to foreign_keys, but in this case the references point to entities saved within the same loader. They are especially useful when writing custom loaders.

Fixture properties

We have mentioned all of the following properties in previous sections, but here is a definition for relevant
properties for fixture classes extending the ZanuiOrmFixture or ZanuiCustomLoader class:

	baseDir

	Defines the base directory where data will be loaded from. Typically it will simply be __DIR__.
As shown above, it is usually a good idea to set in your own base class and extend the rest of the
fixture classes from it.

	name

	Defines the name of the fixture. In the case of fixtures extending ZanuiOrmFixture,
it must match the name of the YAML file where the data is stored to work out of the box. In
the case of ZanuiCustomLoader, it must match the directory name in which the YAML files are stored.

	namespace (only relevant for ZanuiOrmFixture)

	Defines the namespace to use in order to load the entity being loaded.
It falls back to the entity_namespace_fallback parameter described above.

	order

	Defines the order in which the fixture should be loaded. Fixtures with higher order will be loaded after
fixtures with lower order.
It falls back to the base_order_fallback parameter described above.

 Copyright 2014, Internet Services Australia 3 Pty Limited (http://www.zanui.com.au).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ZanuiFixturesBundle 2.0.0 documentation

Advanced usage

Following the directory structure and naming conventions is recommended but not required.
You may decide to extend any of the classes included in this bundle to change the default behaviour.

For example, you may want to override the load(...) and loadInfo(...) methods of the ZanuiOrmFixture
class to follow your own conventions. You may even use the conventions in this bundle for some fixtures and
extend directly from AbstractFixture of the Doctrine2 Data Fixtures library for others.

 Copyright 2014, Internet Services Australia 3 Pty Limited (http://www.zanui.com.au).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	ZanuiFixturesBundle 2.0.0 documentation

Writing custom loaders

This bundle also provides a ZanuiCustomLoader class to help create classes that load data into several
(usually related) entities. Imagine we want to load data about a team and its members. With a custom
loader, we can define a YAML file per team and define all relevant data within that same file, instead of
having teams and members split into several YAML files. This is how the YAML file would look like:

src/Acme/HelloBundle/DataFixtures/Teams/a-team.yml

data:
 team:
 options:
 add_reference: true
 data:
 -
 name: A-team
 motto: If you can find them... maybe you can hire... The A-Team.

 member:
 options:
 local_references:
 - team
 data:
 -
 team: team-0
 name: Hannibal
 -
 team: team-0
 name: Murdock

And here is your custom loader, which extends ZanuiCustomLoader:

<?php
// src/Acme/HelloBundle/DataFixtures/TeamLoader.php

namespace Acme\HelloBundle\DataFixtures;

use Doctrine\Common\Persistence\ObjectManager;
use Zanui\FixturesBundle\DataFixtures\ZanuiCustomLoader;

class TeamLoader extends ZanuiCustomLoader
{
 protected $name = 'Teams';
 protected $order = 1000;
 protected $baseDir = __DIR__;

 $teamClass = 'Acme\HelloBundle\Entity\Team';
 $memberClass = 'Acme\HelloBundle\Entity\Member';

 public function load(ObjectManager $manager)
 {
 $this->manager = $manager;
 $this->info = $this->loadInfo();

 foreach ($this->info as $current) {
 $this->current = $current;
 $this->referenceUniqueSuffix = $this->generateUniqueSuffix();

 $this->loadCustomEntity($teamClass, 'team');
 $this->loadCustomEntity($memberClass, 'member');
 }

 $manager->flush();
 }
}

The custom loader will load all files under src/Acme/HelloBundle/DataFixtures/Teams/ (the name
property of the loader needs to match that of the directory), so next to a-team.yml you could
add other team files and they would be processed automatically.

References in custom loaders are saved with a unique ID to avoid collisions, so they cannot be used outside
the custom loader. Local references have to be explicitly declared using the local_references option.
Notice how for each team member we refer to their team as team-0, as their team is the first one defined in
the file. Although several teams could be defined within the same file, it is recommended to divide them into
separate files.

 Copyright 2014, Internet Services Australia 3 Pty Limited (http://www.zanui.com.au).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	ZanuiFixturesBundle 2.0.0 documentation

Index

 Copyright 2014, Internet Services Australia 3 Pty Limited (http://www.zanui.com.au).
 Created using Sphinx 1.2.2.

 _static/up.png

_static/down.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

_static/comment.png

_static/file.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		ZanuiFixturesBundle 2.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Internet Services Australia 3 Pty Limited (http://www.zanui.com.au).
 Created using Sphinx 1.2.2.

